翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kernel PCA : ウィキペディア英語版
Kernel principal component analysis
In the field of multivariate statistics, kernel principal component analysis (kernel PCA)
〔(Nonlinear Component Analysis as a Kernel Eigenvalue Problem )〕
is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a reproducing kernel Hilbert space with a non-linear mapping.
==Background: Linear PCA==

Recall that conventional PCA operates on zero-centered data; that is,
:\frac\sum_^N \mathbf_i = \mathbf.
It operates by diagonalizing the covariance matrix,
:C=\frac\sum_^N \mathbf_i\mathbf_i^\top
in other words, it gives an eigendecomposition of the covariance matrix:
:\lambda \mathbf=C\mathbf
which can be rewritten as
:\lambda \mathbf_i^\top \mathbf=\mathbf_i^\top C\mathbf \quad\forall i\in ().〔(Nonlinear Component Analysis as a Kernel Eigenvalue Problem (Technical Report) )〕
(See also: Covariance matrix as a linear operator)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kernel principal component analysis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.